Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences

نویسندگان

  • ARNOLD ADELBERG
  • SHAOFANG HONG
  • WENLI REN
  • Wen-Ching Winnie Li
چکیده

Let p be a prime. We obtain good bounds for the p-adic sizes of the coefficients of the divided universal Bernoulli number B̂n n when n is divisible by p− 1. As an application, we give a simple proof of Clarke’s 1989 universal von Staudt theorem. We also establish the universal Kummer congruences modulo p for the divided universal Bernoulli numbers for the case (p − 1)|n, which is a new result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Universal Kummer Congruences

Let p be a prime. In this paper, we present detailed p-adic analysis to factorials and double factorials and their congruences. We give good bounds for the p-adic sizes of the coefficients of the divided universal Bernoulli number B̂n n when n is divisible by p−1. Using these we then establish the universal Kummer congruences modulo powers of a prime p for the divided universal Bernoulli numbers...

متن کامل

Generalized Bernoulli-Hurwitz Numbers and The Universal Bernoulli Numbers

The three fundamental properties of the Bernoulli numbers, namely, the theorem of von Staudt-Clausen, von Staudt’s second theorem, and Kummer’s original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients of power series expansion of a higher genus algebraic function with respect to suitable variable. Our generalization strongly ...

متن کامل

Kummer’s Original Type Congruence Relation for the Universal Bernoulli Numbers

The aim of this paper is to give a congruence on universal Bernoulli numbers which congruence is the same type of Kummer’s original paper [K]. The remakable thing is the index of prime power that is the modulus of the congruence is half of the original one. We mention in this paper that this estimate is best possible. It is suprising fact for the author that the critical index is not less than ...

متن کامل

On Lucas-bernoulli Numbers

In this article we investigate the Bernoulli numbers B̂n associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences {Un} and {Vn}. We give explicit expressions for these numbers and prove analogues of Kummer congruences for them.

متن کامل

Congruences for degenerate number sequences

The degenerate Stirling numbers and degenerate Eulerian polynomials are intimately connected to the arithmetic of generalized factorials. In this article we show that these numbers and similar sequences may in fact be expressed as p-adic integrals of generalized factorials. As an application of this identiication we deduce systems of congruences which are analogues and generalizations of the Ku...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007